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We present a model for pore stabilization in membranes without surface tension. Whereas an isolated pore
is always unstable �since it either shrinks, tending to reseal, or grows without bound until membrane disinte-
gration�, it is shown that excluded volume interactions in a system of many pores can stabilize individual pores
of a given size in a certain range of model parameters. For such a multipore membrane system, the distribution
of pore size and associated pore lifetime are calculated within the mean-field approximation. We predict that,
above the temperature Tm, when the effective line tension becomes negative, the membrane exhibits a dynamic
sievelike porous structure.
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In addition to the area occupied by macromolecules, e.g.,
lipids or proteins, membranes are complex structures that
incorporate also empty areas or pores in a varying amount.
Of various sizes and shapes, membrane pores enhance the
transport of biomolecules across the membranes and their
biological relevance can bring new prospective biotechno-
logical applications �see, e.g., Refs. �1,2��. Pores can form in
membranes in response to thermal fluctuations, thermally ac-
tivated poration process, or external influences, and their
subsequent growth is controlled by the effective line tension
�assuming a negligible small surface tension�. A schematic
depiction of a membrane with holes is displayed in Fig. 1.
Preliminary computer simulations of coarse-grained models
for lipid membranes have indicated that close to their disin-
tegration point, membranes sometimes exhibit a perforated
state where they are peppered of many pores �3�. In the
present paper, we investigate a mechanism that can stabilize
such a state.

We first consider a single pore formation in a membrane
with zero surface tension. For simplicity, the pore edge is
regarded as a closed self-avoiding path of n steps of constant
length l. In the simplest approximation, the free energy �dif-
ference between the state with and that without pores� of the
system �tensionless membrane with a pore of size n� at non-
zero temperature can be written as a summation of two con-
tributions: a purely energetic part as suggested by Litster �4�,
plus an entropic part as modeled by Shillcock and Boal �5�,
f�n�= f0+�0 ln−kBT ln���n��, where f0 is an n-independent
energy, �0 the bare line tension of the pore edge, kBT=1/�
the thermal energy, and ��n� the number of possible confor-
mations of the pore contour of size n. Experimental data
�see, e.g., �6,7�� typically yield values of �0 in the range
10−7–10−6 erg/cm. For self-avoiding walks, ��n� has the
general form �8,9� ��n�=�0znn�−2 where �0 is a constant,
z the effective connectivity constant of the medium �both �0
and z depend on microscopic details and are of order of
1–10�, and the exponent �=1/2 for self-avoiding random
walks in two dimensions and ��2 for any kind of pores. Let
n0 be the minimal size of a pore. The above free energy can
then be rewritten as f�n�=0 for 0�n�n0, and for n�n0,

�1�

where we have defined F0 as the free energy required to
create or initiate a minimal-sized pore, �1 the entropically
modified line tension of the pore edge, and Tm
=�0l /kBT ln�z� the disintegration temperature. In what fol-
lows, we will neglect the logarithmic term, �2−��ln�n /n0�,
that only slightly renormalizes the results. Simple inspection
of Eq. �1� indicates that the free energy of the system mono-
tonically increases as the pore grows larger at low T�Tm
when �1�0, keeping the membrane stable with an unstable
pore that reseals. In this case, a pore of any size has a finite
lifetime and will ultimately shrink to disappearance. In con-
trast, when the effective line tension is negative, �1�0, at
high T�Tm, all newly initiated pores grow without bound
�i.e., with a diverging lifetime� leading hence to destabiliza-
tion and disintegration of the membrane. There are a number
of works that have investigated mechanisms for stabilizing
membranes with a single pore. These include, for instance,
membrane bending fluctuations, renormalization of linear
and surface tension coefficients �10�, area exchange in tense
membranes �11�, osmotic stress �12�, hydrodynamics �6,13�,
orientational ordering �14�, and others �see Ref. �15� for
more details and references�. In this paper we focus on a
stabilizing effect, which is created by the presence of mul-
tiple pores in the membrane.

Indeed, as the probability of initiating several pores on a
membrane increases as the temperature gets higher, we are
now confronted with the situation of a membrane with an
ensemble of pores �as in Refs. �16,17��. If the bare line ten-
sion is negative, the system tries to create as much pore rim
as possible �18�. In that case, a membrane state with many
small pores is more favorable than one with only one very
large pore. In some sense, such a state is similar to a droplet
microemulsion structure in amphiphilic systems, where the
fluid is macroscopically homogeneous, but filled with inter-
nal interfaces on the microscopic scale �19�. To quantify this
expectation, we proceed as follows: First, we consider the
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free energy F�N�n�� of a membrane where the number N�n�
of pores with contour length n is fixed �constrained�. In the
second step, we will relieve the constraint and minimize
F�N�n�� with respect to N�n�. The free energy F�N�n�� has
energetic line tension contributions and entropic shape con-
tributions as in Eq. �1�. Moreover, the pores have the trans-
lational entropy of a two-dimensional gas. However, they
may not overlap, since a configuration with two “overlap-
ping” pores would have to be replaced by a new configura-
tion with just one, larger pore, and a different N�n�. For fixed
N�n�, this restricts the translational degree of freedom of
pores, as if they had excluded volume interactions. Coarse-
grained molecular-dynamics simulations performed by Loi-
son, Mareschal, and one of us �F.S.� �17� have demonstrated
that the spatial distribution of pores in a model membrane is
compatible with a hard-core repulsion between them. Note
that these “interactions” are purely entropic. One could also
introduce real repulsive interactions between pores, originat-
ing, e.g., from direct electrostatic or van der Waals forces,
entropic or Helfrich interactions arising from pore shape
fluctuations, or from membrane undulations �20,21�. How-
ever, it is not necessary for our argument to include those
interactions, and they can be qualitatively lumped into the
excluded area constraints.

To proceed we adopt a simple van der Waals approach
and approximate the free energy F�N�n�� by F�N�n��
=�nN�n�f�n�−kBT ln���, where f�n� is the free energy of a
single pore as given in Eq. �1�, and the total translational
entropy � of the pores is given by

� = �
n

�1/�N�n��!���Am − Aex�/a0�N�n�

	 �
n

��Alip − A0�/a0N�n��N�n�exp�N�n�� . �2�

Here a0 is a reference area defined below, Am is the total
membrane area, Am=Alip+Apores, with the area of lipids Alip
and the pore area Apores, and Aex is the area that is effectively
inaccessible to a test pore due to the presence of the other

pores �the excluded area�. Due to the fractal nature of the
pores, Aex is larger than Apores as indicated in Fig. 1. Notice
that Alip is constant since it is proportional to the number of
lipids. In writing the rightmost expression in Eq. �2�, we
have used the approximation, N ! 	NNe−N, and have rewrit-
ten the accessible area for pores as Am−Aex=Alip−A0, such
that A0=Aex−Apores=�nN�n�a�n�, where a�n� is the differ-
ence between the excluded and the actual areas of a pore of
size n. Since the contours of the pores have self-avoiding
walk statistics, a�n� scales like a�n�=a0�n /n0�2	 with the
Flory exponent 		3/4 �22�. This defines a0. Now, inserting
Eq. �2� into the free-energy expression, and minimizing with
respect to N�n�, yields the normalized equilibrium distribu-
tion Peq�n� of pore sizes,

Peq�n� = N�n�
�
n=1




N�n� =
exp�− �G�n��

Q
. �3�

Here we have defined the effective free energy, G�n�
= f�n�+kBTQ�n /n0�2	. The partition function Q can be re-
garded as a packing density of pores, and is given self-
consistently as

Q =
a0

�Alip − A0��n

N�n� = �
1




e−�G�x�dx . �4�

Defining x=n /n0 and using 	=3/4, the effective free-energy
G�x� of a pore in a membrane containing an ensemble of
pores �in gas phase� reads as G�x�=0 for 0�x�1, and

G�x� = F0 + QkBT + n0l�
1

x

�eff�x��dx�; x � 1, �5�

where the effective line tension �eff is defined as

�eff�x� = �0�1 − T/Tm� + �3QkBT/2n0l�x1/2. �6�

As a result of the renormalization of Eq. �1� by the excluded
area constraints due to other pores, the effective line tension
becomes a function of the pore size. This is the origin of the
packing stabilization mechanism that leads to a sievelike
structure of membranes. Indeed, as already mentioned above,
a single pore destabilizes the membrane at high temperature
T�Tm as the effective line tension becomes negative. In a
multiple pore system, however, the membrane remains stable
even beyond Tm. For temperatures such that Tm�Tc�T,
G�x� in Eq. �5� admits a minimum at x=x1 such that

�eff�x1� = 0 Û �x1 = �QcTc/QT���T − Tm�/�Tc − Tm�� , �7�

where Qc=Q�T=Tc� and Tc, the critical temperature at which
x1=1, is given by 3Qc=2Q0�1−Tm /Tc�, i.e.,

2Q0�1 − y�
3

= e−y�mF0�
1




dx exp�Q0�1 − y���x − 1� − 2
3x3/2�� ,

�8�

with Q0=n0 ln�z� and y=Tm /Tc.
Two conclusions can be drawn out of these results. First,

the excluded area constraints between pores can stabilize a
membrane even in parameter regions where the effective line

FIG. 1. Schematic depiction of a porous membrane, illustrating
the different areas introduced in the text: The total surface Alip

covered by all lipids �gray filled circles�, the total area of pores
Apores, and the total area Am=Alip+Apores. The circle around the pore
represents the area that is effectively excluded by the pore, and the
total excluded area for all pores is Aex. Due to the fractal shape of
pores, the excluded area of pores is larger than their actual area.
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tension of pores is negative. Second, the distribution of pore
size in the case of negative effective membrane line tension
may have a maximum at nonzero contour length as illus-
trated in Fig. 2. Three regimes can be distinguished: �i� At
low T�Tm, the line tension is positive and the distribution
Peq�n� of pore size drops monotonically as a function of n.
�ii� At intermediate temperatures, Tm�T�Tc, the line ten-
sion is negative, Peq�n� still drops monotonically, but the
pores are now stabilized due to the presence of the others.
�iii� At high T�Tc, a maximum emerges in Peq�n�, i.e., pores
have a most probable size. Figure 2 shows the reduced dis-
tribution of pore size, Peq�x� / Peq�1�, for two temperatures
below and above Tc, with a maximum at x=3 �or n=3n0� for
T�Tc. The onset of this regime, which corresponds to a
“porous membrane state,” sensitively depends on the bare
pore free energy, F0, required for creation of a minimal-sized
pore. This is illustrated in Fig. 3, where Tc decreases towards
Tm �i.e., Tm /Tc increases towards 1� when increasing either
F0 or the effective smallest pore size Q0.

From a practical point of view, the porous membrane state
is interesting because one may expect that the membrane be
highly permeable in this regime. Therefore, the dynamical
nature of pores is crucial for any dynamical process in mem-
branes �e.g., lateral diffusion of lipids in the bilayers, or dif-
fusion of various solute molecules within or across mem-
branes�. Indeed, to diffuse, a solute particle needs both a
sufficient activation energy and an empty space large enough
to jump to. In the mean-field approximation, the diffusion
coefficient depends on the fraction of the free area or cavities
per particle, the rearrangement time of free cavities, and their
lifetimes. Although limited, the mean-field picture neverthe-
less captures the essential features of pore formation and
dynamics, and when properly interpreted, it yields reason-
able estimates for the pore size distribution and the multipore
structure which can be used further for a semiquantitative
description of permeation and diffusion in membranes. Ac-
cordingly, apart from the number and size of pores, another
key quantity that determines the membrane permeability is
the lifetime of pores, i.e., how long a pore stays open once
created. We now discuss briefly how the lifetime of pores is
affected by the presence of the other pores.

Six processes contribute to the dynamical evolution of the
pores: Pore opening and closing, pore growth and shrinking,
pore coalescence and splitting. The pore opening and closing
is mainly controlled by the potential barrier that must be
overcome to create a pore: the amphiphiles must change their
orientation, and the free energy in the intermediate state is
different from the corresponding energy when a pore already
exists. The characteristic time scale of this process does not
depend on the pore packing and shall not be considered here.
Amphiphile rearrangements also take place when pores coa-
lesce and split, hence these processes are rate driven and the
characteristic time scale depends on the height of a potential
barrier. For simplicity, we shall assume that this height is
very large, i.e., we shall neglect coalescence and splitting
events. Hence we are left with the characteristic time � for
the growing and shrinking of a pore. Our main interest in this
quantity is to allow comparison on the pore lifetime in two
distinct situations: a single pore in a membrane versus a pore
in a gas phase ensemble of pores in a membrane.

Neglecting hydrodynamic effects �23�, the growth and
shrinking dynamics of the pore can fairly be described by a
diffusion process with a diffusion constant D �assumed here
independent of x� in the potential G�x�. Then, � is given by
the mean time that an already existing pore takes to first
reach the minimum pore size x=1 �or, n0�. According to the
first passage time theory, the lifetime � can be estimated from
the relation �24–26�

� = �n0
2/D��

1




dxe�G�x��
x




e−�G�y�dy�2
�
1




e−�G�x�dx .

�9�

In the case of a single pore in a membrane, Eq. �9� reduces to
the pore lifetime �0 as

�0 = �n0
2/D��Q0�Tm/T − 1��−2; T � Tm. �10�

This �0 quadratically increases with temperature and di-
verges with the membrane disintegration as T approaches Tm.
As displayed in Fig. 4, in the case of an ensemble of pores,
the pore lifetime � begins to increase considerably at Tm but
without diverging and thus, with no membrane disintegra-
tion. At T below Tc, a pore of any size will ultimately shrink
to disappearance because of the drift towards x=1. In the
stabilized regime above Tc, the pore size diffuses towards the

FIG. 2. �Color online� Reduced equilibrium distribution,
Peq�x� / Peq�1�=e−��G�x�−G�1��, of pore size x for �F0=2, Q0=4, and
two temperature regimes. G�x� is given in Eq. �5� with Q=0.215 for
T=Tm and Q=8/ �9�3�=0.513 for T�Tc �i.e., for T=3Tm /2 and
Tc=1.082Tm�. The dashed-vertical line indicates the maximum
x1=3 for T�Tc.

FIG. 3. �Color online� Ratio Tm /Tc in Eq. �8� as a function of
the reduced energy of pore formation.
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minimum x1�1 of G�x�, and x=1 can be reached via an
escape process over the energy barrier, =G�1�−G�x1�, such
that � scales as ��exp���. As a result, the pore remains
open much longer in the packing stabilized regime without
membrane disintegration.

To summarize, we have analyzed the statistics of multiple
pore formation in membranes without surface tension within
a classical van der Waals approach. We have shown that the
exclude area interactions between pores allow membrane sta-
bilization against disintegration even when the effective line
tension becomes negative at high temperatures. In a certain

range of parameters, this leads to a nanoporous membrane
state where the membrane has a sieve structure with long-
lived holes of finite size. Owing to the rich diversity of bio-
logical systems �all the more artificial lipid bilayers� and
wide range of accessible parameters, we expect such stable
multipore membranes to exist at physiological conditions
with pore sizes in the range of �1–10� nm. This invites
speculations on possible applications of such structures, e.g.,
membranes with selective permeability for controlled drug
delivery, or to promote biomolecule translocation.

Our result illustrates the rich variety of membrane struc-
tures that can form by chemically or physically tuning the
line tension �. As a crude approximation, we have ���0h,
where �0 is the free energy per unit area between coexisting
regions of hydrophobic and hydrophilic molecules, and h the
membrane thickness. Such an estimation is valid only for the
so-called hydrophobic pores, while for hydrophilic pores, the
scaling is ��� /h, where ��h2 is the bending modulus and
1/h the membrane pore curvature. As ��h in any case, one
would expect sievelike membrane structures to be more
likely in thin membranes. There are, however, other mecha-
nisms, such as in mixed membranes or membranes with ad-
ditives, that also lead to reduction of the line tension. An-
other option could be the effect of the applied voltage U that,
as shown by Winterhalter and Helfrich �27�, modifies the
bare line tension �0 of the membrane as, ��U�→�0

−�w�0U2 /2�, where �0 is the vacuum electric permittivity
and �w�80 the dielectric constant of water. Nevertheless, it
is worthwhile to emphasize that if the line tension reduction
is one thing, the formation of sievelike structures requires in
addition a pore-size-dependent line tension.
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FIG. 4. �Color online� Reduced pore shrinking time in Eq. �9� as
a function of the reduced temperature Q0�1−Tm /T� for different
�F0. The dotted vertical line indicates T=Tm above which the line
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�F0=0.5, 1, 2, respectively� where Peq�x� starts to exhibit a maxi-
mum as in Fig. 3.
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